МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Череповецкий государственный университет»

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

институт (факультет)

ФИЗИКИ

кафедра

УТВЕРЖДЕНО

на заседании ученого совета института информационных технологий

«23» июня 2020 г., протокол № 10A

директор института информационных

тахнологий

/ Ершов Е.В.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОСТИ ДЛЯ ОБУЧЕНИЯ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

Уровень профессионального образования:

высшее образование – подготовка кадров высшей квалификации по программам подготовки научно-педагогических кадров в аспирантуре

(высшее образование – специалитет, магистратура; высшее образование – подготовка кадров высшей квалификации по программам подготовки научно-педагогических кадров в аспирантуре)

Направление подготовки (специальности):

03.06.01 Физика и астрономия

(код и наименование направления подготовки (специальности) в соответствии с перечнем специальностей и направлений подготовки высшего образования, утверждаемым Министерством образования и науки Российской Федерации)

Направленность (профиль) образовательной программы:

01.04.07 Физика конденсированного состояния

г. Череповец, 2020 г.

Общие сведения о программе

Программа вступительного испытания по физике конденсированного состояния составлена на основе требований ФГОС ВО по направлению подготовки 03.06.01 Физика и астрономия (уровень подготовки кадров высшей квалификации), утвержденном приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. № 867 (зарегистрирован Министерством юстиции Российской Федерации 25 августа 2014 г., регистрационный № 33836).

Программа вступительного испытания по физике конденсированного состояния сформирована на основе федеральных государственных образовательных стандартов высшего образования по программам специалитета или магистратуры.

Программа вступительного испытания по физике конденсированного состояния рассмотрена и рекомендована к утверждению на заседании кафедры

ФИЗИКИ

наименование кафедры

от 21 сентября 2020 г., протокол № 2

Сведения о разработчике (ах) программы:

Максимов А.В., д.-р. м. н., профессор, заведующий кафедрой физики ЧГУ

(ФИО, ученая степень, ученое звание, должность, место работы)

Казаков В.В., канд. ф.-м. н., доцент, доцент кафедры физики ЧГУ

(ФИО, ученая степень, ученое звание, должность, место работы)

Максимова О.Г., канд. ф.-м. н., доцент, доцент кафедры физики ЧГУ

(ФИО, ученая степень, ученое звание, должность, место работы)

1 ФОРМЫ ПРОВЕДЕНИЯ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

Вступительные испытания проводятся в устной форме по билетам

2 ТРЕБОВАНИЯ К ВСТУПИТЕЛЬНОМУ ИСПЫТАНИЮ ПО СПЕЦИАЛЬНОСТИ

Изучение физики конденсированного состояния — общепринятый в мировой научной практике путь формирования у соискателей целостной системы знаний по фундаментальным вопросам различных областей физикоматематических и технических наук, без уяснения содержания которых немыслима ни плодотворная научная деятельность, ни рост профессиональной подготовки будущего ученого-физика, занимающегося:

- изучением структуры и физических свойств конденсированных систем (твердых тела и жидкостей), в том числе под воздействием физических полей и излучений, основываясь на молекулярно-кинетических, термодинамических и квантово-механических представлениях;
- исследованием термодинамики состояний, фазовых переходов, явлений переноса и релаксационных процессов в конденсированных телах, в том числе в гетерогенных системах.

Вступительные экзамены в аспирантуру по физике конденсированного состояния проводятся по программам, соответствующим требованиям подготовки специалистов по Государственному образовательному стандарту.

В соответствии с этими требованиями поступающий в аспирантуру должен:

- иметь представления о структуре веществ в конденсированном состоянии и их основных свойствах, основываясь на молекулярнокинетических, термодинамических и квантово-механических представлениях;
- знать основные методы исследования структуры и свойств конденсированных тел и иметь навыки по использованию теоретических знаний при решении практических вопросов;
- обладать навыками инженерного мышления, решения научных и технических проблем физики конденсированного состояния;
- знать основы теорий физики твердого тела и жидкости (в том числе полимеров), термодинамику конденсированных сред,
- иметь квантово-механические представления о взаимодействии частиц и квазичастиц, связь основных свойств конденсированных сред с их атомно-молекулярным и кристаллическим строением;
- уметь оценить основные свойства конденсированных тел, выбрать и обосновать рациональные методы исследования и приборную базу, обеспечивающие необходимую точность измерений; теоретически моделировать процессы взаимодействия внешних полей и излучений с элементами структуры конденсированных тел.

Примерные вопросы для вступительного экзамена в аспирантуру

- 1. Атом, молекула, квантование внутренней энергии. Межатомные и межмолекулярные связи: ковалентная, ионная, металлическая, ван-дерваальсова, водородная, координационная. Атомные и молекулярные спектры. Конденсированное тело. Классификация структур: химические элементы, неорганические вещества, органические вещества.
- 2. Кристаллическое состояние. Симметрия кристаллов. Трансляционная симметрия. Кристаллографические обозначения. Элементарная ячейка. Закон Вульфа-Брэгга. Решетки Браве. Геометрическая модель. Обратная решетка. Дефекты в кристаллах: смещенные атомы, вакансии, атомы внедрения и замещения, дислокации (краевые, винтовые). Энергия, подвижность и взаимодействие дислокаций.
- 3. Аморфные и стеклообразные вещества. Дальний и ближний порядок. Координационное число и координационная сфера. Твердые растворы. Аморфные металлы и сплавы, аморфные и стеклообразные полупроводники. Стекла: позиционные, спиновые, дипольные, электрические квадрупольные, протонные, сверхпроводниковые.
- 4. Жидкости. Ближний порядок. Степени свободы молекул. Радиальная функция распределения. Свободный объем. Самодиффузия и текучесть. Кипение. Растворы и расплавы. Квантовые жидкости. Термотропные и лиотропные жидкие кристаллы (мезофазы). Статистическая теория жидкостей. Функция распределения.
- 5. Полимеры: классификация и особенности строения. Конформация и конфигурация макромолекул. Гибкие и жесткие цепи. Надмолекулярная структура полимеров. Молекулярно-массовое распределение. Фазовые переходы и фазовые диаграммы. Плавление, кристаллизация и стеклование. Степень кристалличности. Стеклообразное, высокоэластическое и вязкотекучее состояния. Вынужденная эластичность. Отжиг полимеров. Ориентационная вытяжка и кристаллизация. Жидкокристаллические полимеры.
- 6. Волновые функции и уравнение Шредингера. Волновой вектор электрона в кристалле. Зоны Бриллюэна. Поверхность Ферми, энергия Ферми. Свободные электроны (классическая и квантовая теории). Приближение сильной связи. Эффективная масса электрона. Вырожденный электронный газ. Электроны и дырки.
- 7. Зонная теория твердых тел. Одномерная модель электронных зон. Заполнение зон электронами в идеальном кристалле. Плотность электронных состояний. Примесные уровни и поверхностные состояния. Металлы, диэлектрики, полупроводники.
- 8. Частицы и квазичастицы: фононы, электроны проводимости, плазмоны, поляроны, экситоны, магноны. Одноэлектронное приближение Хартри-Фока. Квантовая статистика газа частиц (квазичастиц): бозоны и фермионы. Взаимодействие частиц и квазичастиц: электрон-

- фононное (в тепло- и электропроводности), электрон-электронное посредством обмена виртуальными фононами (сверхпроводимость), фонон-фононное (ангармонизм колебаний, тепловое расширение и теплопроводность кристаллической решетки).
- 9. Равновесные и неравновесные термодинамические состояния. Фаза Термодинамическое равновесие фаз. Фазовые переходы I и II рода. Равновесие в многокомпонентных системах и правило фаз Гиббса. Линии (поверхности) равновесия и диаграммы состояния. Кинетика фазовых превращений. Диффузионные и бездиффузионные превращения.
- 10. Термодинамика растворов полимеров и полимерных сеток. Фазовое равновесие системы полимер-растворитель. Модели растворов. Теория Флори-Хаггинса. Диаграммы состояния полимер—растворитель. Гелеобразование. Студни полимеров. Уравнение состояния полимерных сеток. Природа высокоэластичности полимерных сеток.
- 11. Статистическая физика макромолекул. Природа гибкости макромолекул. Сегмент. Конформационная статистика реальных макромолекул и поворотные изомеры. Термодинамический потенциал. Упругая и высокоэластическая деформация. Классическая теория высокоэластичности полимерных сеток в гауссовом приближении. Высокоэластический потенциал. Двухосное симметричное и несимметричное растяжение.
- 12. Диффузия. Законы Фика. Особенности диффузии в кристаллах, твердых растворах внедрения и жидкостях. Макроскопическая диффузия. Проницаемость полимеров. Сорбция газов и паров. Диффузия агрессивных сред. Деструкция полимеров в агрессивных средах.
- 13. Электро- и теплопроводность. Теплоемкость кристаллической решетки. Механизмы рассеяния электронов. Термодинамика теплового расширения. Электронная и фононная теплопроводность. Теплопроводность диэлектриков и металлов. Механизмы электропроводности (электронная, ионная, дырочная). Природа электрического сопротивления (подвижность и концентрация носителей заряда, взаимодействие с фононами и др.). Эффект Холла. Сверхпроводимость.
- 14.Полупроводники. Электронная структура. Примесные уровни. Доноры и акцепторы. Особенности температурной зависимости проводимости. Собственная электропроводность. Теория р-п переходов. Фотопроводимость. Рекомбинация и релаксация неравновесных носителей заряда. Переход металл-полупроводник. Потенциальный барьер Шоттки. Полупроводниковый выпрямитель. Туннельный диод. Транзисторы (биполярный, полевой). Приборы с гетерогенными переходами.
- 15. Диэлектрики. Поляризация (электронная, ионная и ориентационная). Дипольная релаксация. Электрострикция и пьезоэлектричество. Пироэлектрики и сегнетоэлектрики. Электреты. Электропроводность в сильных полях. Электрический пробой.
- 16.Полимеры. Структурная (тепловая) релаксация и стеклование. Молекулярная подвижность и уравнение Больцмана-Аррениуса. Теория

- линейной вязкоупругости; модели Максвелла, Кельвина-Фойгта, Слонимского. Реология полимеров: закономерности течения аномально вязких систем. Поляризация и диэлектрические потери. Электрическая релаксация в полимерах. Электрическая проводимость. Электрическая прочность.
- 17. Упругость и пластичность. Тензор упругих постоянных и упругая деформация. Обобщенный закон Гука. Предел текучести. Твердость и прочность. Упрочнение. Внутреннее трение. Механическая и термическая усталость. Ионно-плазменные эффекты изменения структуры и свойств твердых тел.
- 18. Прочность и разрушение полимеров. Термодинамическая и кинетическая концепции разрушения. Теория Гриффитса. Термофлуктуационная теория хрупкого разрушения. Микромеханика разрушения полимерных волокон и стекол. Динамическая усталость. Механизм прочности и разрушения эластомеров. Вязкое течение и долговечность эластомеров.
- 19.Отражение, рассеяние и поглощение электромагнитного излучения в конденсированном теле. Механизмы поглощения фотонов. Поглощение свободными носителями. Электронное поглощение. Дипольное поглощение. Резонансное поглощение. Центры окраски. Многофотонные процессы. Люминесценция. Флюоресценция. Безызлучательные переходы. Индуцированное излучение. Фотоэлектрические эффекты.
- 20.Спин и магнитный момент атомов. Диамагнетизм и парамагнетизм. Феноменология ферромагнетизма и антиферромагнетизма. Спиновые волны (магноны), энергия магнитной анизотропии, коэрцитивная сила и гистерезис. Доменная стенка. Магнитострикция. Ферриты.
- 21.Поверхность как элемент структуры конденсированных тел. Влияние поверхности на энергию связи электрона. Электронные поверхностные уровни. Работа выхода. Контактная разность потенциалов. Термоэлектронная эмиссия. Двойной электрический слой. Свободная энергия диффузионного двойного слоя.
- 22. Поверхностное натяжение и поверхностная свободная энергия. Капиллярное давление. Смачивание и растекание. Краевой угол. Гидрофобность и гидрофильность. Поверхностные силы и расклинивающее давление. Электрокапиллярность.
- 23. Модифицирование поверхности металлов и сплавов в т.ч. полимеров (химическое, плазменное). Тонкие пленки на твердых поверхностях. Испарение, конденсация, зародышеобразование. Кластеры. Адгезия. Межфазный контакт. Теории адгезии полимеров к твердым телам. Контактное окисление полимеров. Прочность, долговечность и разрушение адгезионных соединений.
- 24.Исследование структуры и фазового состава твердых тел (химическое строение, поверхность, надмолекулярная структура): оптическая, электронная и атомно-силовая микроскопия; рентгено- и электронография;

- рассеяние поляризованного света, УФ- и ИК- спектроскопия (в том числе МНПВО), ЯМР, эффект Мессбауэра, ЭПР, ЯМР.
- 25.История открытия и изучения ЖК. Молекулярное строение ЖК. Классификация ЖК. Термотропные ЖК: нематики, смектики и холестерики. Анизотропия физических свойств — основная особенность ЖК. Параметры ближнего и дальнего ориентационного порядка. Применение ЖК в электронике: устройство и принцип работы оптической ячейки (индикатора). Лиотропные ЖК: жидкие кристаллы в биофизике. ЖК полимеры.
- 26. Компьютерное моделирование методом МД свойств жидкостей и твердых тел: граничные условия, виды потенциалов, условия равновесия, вычисляемые величины. Понятие «молекулярного кино». Результаты компьютерных экспериментов методом МД (на примерах 2d-моделей сфер и эллипсов). Моделирование конформаций и динамики, расчет свойств молекул (кристаллов, фуллеренов и др.) в физике конденсированного состояния.

Список литературы

Основная литература

- 1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, т.1 Механика. М., Физматлит, 2013, 224 с.
- 2. Сивухин Д. В. Общий курс физики. В 5 томах. Том 2. Термодинамика и молекулярная физика, М.: ФИЗМАТЛИТ, 2013
- 3. Физика твердого тела /Епифанов Г.И. СПб: Лань, 2011. 288 с. http://e.lanbook.com/books/element.php?pl1_id=2023
- 4. Основы физики конденсированного состояния: [учебное пособие] / Ю. В. Петров. Долгопрудный: Интеллект, 2013. 213 с 72.
- 5. Купрекова Е.И. Физика твердого тела. Сборник заданий: Уч. пособие. 2014 год. 172 стр.
- 6. В. Л. Матухин, В. Л. Ермаков. Физика твердого тела. // М., Лань, 2011.
- 7. Ю. А. Байков, В. М. Кузнецов. Физика конденсированного состояния. // М., Бином. Лаборатория знаний, 2015, 3-е изд.
- 8. Епифанов Г. И. Физика твердого тела: Учебное пособие. 4-е изд., стер. СПб.: Издательство «Лань», 2011. 288 с.
- 9. А. С. Василевский. Физика твердого тела. // М. Дрофа, 2011 г.
- 10. Иродов И.Е. Электромагнетизм. Основные законы: учебное пособие для вузов. Москва: Бином. Лаборатория знаний, 2014. 320 с.
- 11. Таволжанский С.А. Производство слитков из цветных металлов и сплавов. Непрерывное литье слитков из цветных металлов и сплавов в

подвижные кристаллизаторы [Электронный ресурс]: учебное пособие/ Таволжанский С.А.— Электрон. текстовые данные.— М.: Издательский Дом МИСиС, 2016.— 73 с.

12. Ландау Л.Д., Лифшиц Е.М. Теория поля. М., Физматлит, 2012, 536 с.

Дополнительная литература

- 1. Фомин Д.В. Экспериментальные методы физики твердого тела [Электронный ресурс]: учебное пособие/ Фомин Д.В.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2017.— 185 с.
- 2. Родин А.О. Физическая химия, М., Изд.Дом МИСиС, 2010
- 3. Материаловедение. Методы анализа структуры и свойств металлов и сплавов [Электронный ресурс]: учебное пособие/ Т.А. Орелкина [и др.].— Электрон. текстовые данные.— Красноярск: Сибирский федеральный университет, 2018.—214 с
- 4. Хакимуллин Ю.Н. Химияи физика полимеров. Физические состояния полимеров [Электронный ресурс]: учебное пособие/ Хакимуллин Ю.Н., Закирова Л.Ю.— Электрон. текстовые данные.— Казань: Казанский национальный исследовательский технологический университет, 2017.— 141 с.
- 5. Петелин А.Л. Нелинейная термодинамика М.: Изд.Дом МИСиС. 2011.

УР / А.В. Максимов

Заведующий кафедрой физики